轉職不用心驚驚!達內教育讓你半年轉行軟體工程師!

轉職不用心驚驚!達內教育讓你半年轉行軟體工程師!
轉職不用心驚驚!達內教育讓你半年轉行軟體工程師!

達內教育專業課程,讓你半年轉行軟體工程師不是夢!

新冠肺炎發生以來,一度拉開人與人之間的距離,但是也有不少新興行業應運而生,或是早已看準時代潮流,提前推出符合產業發展與當代互動模式的產品,例如各種主打科技教育的線上課程公司即為一例。其中「達內教育」甚至打出「結業即就業」招牌,以精實的AI人工智慧、大數據等課程,力求讓完全沒有基礎的學員,也能在6個月後當上工程師。

 

大膽宣稱能將零基礎學員培訓到面試就業、風格在業界獨樹一格的達內教育,除了教學以外,還做免費的就業媒合服務,吸引許多零基礎、零經驗的待業者與轉職者報名。達內教育教學總監呂紹榮說,「結業即就業」正是達內教育的品牌使命,課程絕非短短幾十個小時的速成班,而是依照科別差異,總授課時數約在300~400小時之間,平均約半年可學完。

達內教育教學總監呂紹榮老師

呂老師指出,相較於實體授課,線上課程的特色就是時間比較彈性,但達內教育的授課時數又特別長,完全是職訓班規模。而且達內的特色就是結合線上與實體兩種介面的優勢,除了有線上課程可看,在中心還有真人輔導老師隨時待命、隨時回答學員提問。在中心也提供大型教室,如果學員遇到困難,甚至還可預約老師一對一教學,保證教到會。線上與實體搭配,構築「隨時隨地隨看隨問」的完整課程。

 

目前達內教育最熱門的課程是應用層面很廣,可做機器學習、大數據分析、網路爬蟲等等的Python。呂老師說,Python在達內的培訓方式很紮實,遠非坊間補習班或學院內的入門培訓可比,學完可以直接到業界工作。此外Java也是達內教育的熱門課程,可讓零基礎學員,半年後擁有獨立架設電商購物網站能力。

 

除了JavaPython 之外,包括網站前端開發、Unity 遊戲設計、UI/UX 介面設計以及網路數位行銷,也都是達內教室精心設計的招牌課程。數位行銷又分成兩塊:Google 關鍵字廣告以及 SEO 搜尋引擎最佳化課程。比如就算沒有一技之長,只是喜愛玩遊戲,也可以在學 Unity 遊戲設計課程後,在結業時可以獨立做出完整的 RPG 手機遊戲。

 

目前達內教育的學員人數不斷成長當中,在新冠疫情期間,還有學員因不想到補習班人擠人,特地諮詢報名達內的課程,而輔導老師也在該段期間,曾透過遠端連線學員的家中電腦,親自操作解題。

達內教育的即時解題老師群

呂老師認為,線上課程絕對是趨勢,若仔細觀察坊間的各大補習班、學校等教育機構,會發現線上課程一直都在蓬勃發展,加上受到疫情的關係,各大專院校、中小學都開始採用視訊教學。而由於達內進行視訊教學已有一段時日,疫情來襲時,很快能掌握線上課程會面臨哪些情況,就能維持原本的服務,並新增了電話解題的服務,學員一有疑問,可立即通電話獲得協助。

達內教育的教學輔導團隊

以職訓為導向的達內,會訓練所有學員在結業時獨立完成專案作品,輔導老師甚至還會協助檢視履歷、模擬面試、就業媒合,務求讓學員結業即就業,而負責就業媒合服務的人員也有就業輔導員證照。此外,達內還有定期舉辦高階技術研討會、總監日、實作班等面授活動,比如當紅的「口罩地圖」是如何製作,就曾在總監日互動研討。

 

目前達內教育所有的學員中,有3成是全力投入學習的待業者,有4成是在職中精進豐富所學,還有3成學員純粹出於興趣。這家每半年到一年就更新一次教材、與業界最新技術同步的線上課程公司,提供創業轉職或純粹追求自我的一種進修的選擇。

達內教育:https://www.tedu.tw/

 

 

 

 

推薦文章:
台灣本土開發AI 發行首張音樂專輯<<武漢肺炎>>


Python vs R語言:哪個比較適合人工智慧/機器學習?


AI 人工智慧、ML 機器學習、深度學習、Python 是什麼?


線上職訓正夯 從零開始花半年錄取軟體工程師


狗狗也能當老師!人工智慧機器人學會轉彎還會小跑步!(上)


聽聽看不吃虧!關於Python的24條真心建議!


學Python到底有什麼好?三大好處報你災!

輕鬆搞定機器學習-非監督式學習篇(下)

輕鬆搞定機器學習-非監督式學習篇(下)
輕鬆搞定機器學習-非監督式學習篇(下)

搞定機器學習其實一點也不難,前提是要用對方法!(下)

 

本篇為下篇,上篇請點此連結

二、非監督式學習

1. 隨機森林(Random Forest)

隨機森林可以視為決策樹的延伸,可以把隨機森林當作是多個決策樹組合而成,並加入隨機分配的訓練資料,以大幅增進最終的運算結果。其想法就是結合多個「弱學習器」(即決策樹)來建構一個「強學習器」模型。這種方法被稱為「集成」(Ensemble Method)。同時也能降低單個決策樹出錯的風險。

▲ 決策樹演算法示意圖

 

如果創建一個隨機森林模型預測數值,只有第三個決策樹預測為 0,但是如果整合所有決策樹的結果,將會判斷出預測值是為 1。

隨機森林的優點為可以處理大量的輸入變數,同時可以計算各例中的親近度,對於資料探勘、偵測離群點和將資料視覺化非常有用。

2. 聚類分析(Cluster analysis)

聚類分析是統計資料分析的技術,後來在像是機器學習等領域受到廣泛應用。「聚類」是把相似的物件通過靜態分類,分成不同的組別或子集(subset)。聚類有很多種方法,常見的如 K-means、層次聚類(Hierarchical clustering)、譜聚類(Spectral Clustering)等等。

▲ 「聚類」是把相似的物件通過靜態分類,分成不同的組別或子集 (圖片來源: geeksforgeeks.org)

 

聚類時,把需要實現的目標只是要把相似的東西聚到一起,一個聚類算法只需要知道如何計算相似度就可以開始分類,因此聚類算法並不需要使用訓練資料進行學習。

3. 主成分分析(Principal Component Analysis,PCA)

主成分分析 PCA 是一個在機器學習與統計學領域中被廣泛用來分析資料、降低數據維度以及去關聯的線性降維方法。降維(Dimension reduction)是當資料維度數(變數)很多的時候,嘗試讓維度數(變數)少一點,但資料特性不會差太多的方法。

機器學習使用 PCA 達到降維的目的,主要是為了避免「維數災難」,或稱「維度詛咒」,指當維度增加時,分析和組織高維空間因體積指數增加而遇到各種問題:在機器學習問題中,模型預測能力會隨著維度的增加而減小。

4. 奇異值分解(Singular Value Decomposition,SVD)

奇異值分解 SVD 是線性代數中一種重要的矩陣分解,不僅可以用於降維演算法中的特徵分解,還可以用於推薦系統以及自然語言處理等領域。

▲ 實數 2×2 矩陣 M 的奇異值分解 UΣV * 的圖示。(圖片來源:圖片來自 Wikipedia)

 

SVD 矩陣是一個複雜的實復負數矩陣,給定一個 m 行、n 列的矩陣 M,則 M 矩陣可以分解為 M = UΣV。U 和 V 是么正矩陣(unitary matrix),Σ 為對角陣。

SVD 在某些時候可以做為簡化版的 PCA 利用。PCA 演算法可以不用做特徵分解,而是做 SVD 來完成,在樣本量很大的時候很有效。實際上 Python 的免費機器學習庫「scikit-learn」的 PCA 演算法的背後真正的實現就是用 SVD。

獨立成分分析(Independent components analysis,ICA)

ICA 是一種利用統計原理進行計算的方法。前面在主成分分析(PCA)時談到「降維」的方法,但對符合高斯分佈的樣本點比較有效,那麼對於其他分佈的樣本,則是適合用「主元分解」的 ICA。

ICA 會假設現有資料其實是多個彼此獨立的資料、透過混合後成為現有資料,因此期望能夠從手中的資料,回推出是哪些獨立的分配。例如 ICA 的經典問題「雞尾酒會問題」(cocktail party problem):描述給定混合信號,如何分離出雞尾酒會中同時說話的每個人的獨立信號。

▲ ICA 的經典問題「雞尾酒會問題」示意圖:目的是從混合信號 Mixture1 和 Mixture2 中恢復成每個人的獨立信號 Person1和Person2。(圖片來源:vocal.com)

 

ICA 是研究盲信號分離(blind signal separation)的一個重要方法,並且在實際中也有很多應用。

為何使用 Python 學機器學習、而不是 R 語言?

介紹完當今應用最廣泛、最熱門的幾大機器學習演算法,可以看出從數據分析、統計分析到模型驗證等等都應用在其中。

Python 可以說是簡單上手的程式語言,原本就適合作為第一個入門的程式語言,而透過如 scikit-learn 的 Python 機器學習套件,在 Python 中提供大量常見的機器學習演算法和許多實用的函式庫,亦能呈現該演算法資料輸出的型態,相當方便。

當然 Python 和 R 語言不是互斥,許多工程師也是在兩者之間切換,但是有鑑於 Python 是當今的通用語言,除了AI人工智慧領域外也可以廣泛應用在各種領域,其免費及開源的特性, 有許多支持 Python 的輔助工具、大型模組與函式庫,可以簡單上手數據分析或複雜的程式計算,以及能與幾乎所有現代作業系統兼容等的特點,讓它脫穎而出。

以投資報酬率而言,如果是要從頭開始選擇一種程式語言學習,Python 肯定是最佳的選擇。

推薦閱讀:Python vs R語言:哪個比較適合人工智慧/機器學習?

 

 

 

 

 

推薦文章:
如何使用人工智慧工具,活用 Python 簡化繁瑣的行銷工作?

Python vs R語言:哪個比較適合人工智慧/機器學習?

六個月從工地工人轉職 Java 軟體工程師,全因半年做了「對的決定」

台灣本土開發AI 發行首張音樂專輯<<武漢肺炎>>

穿戴裝置潮流正夯,人工智慧眼鏡如何改造你我世界?!(上)

拯救地球靠AI?!保護環境還比人類快?!(上)

學Python到底有什麼好?三大好處報你災!
 

輕鬆搞定機器學習-監督式學習篇(上)

輕鬆搞定機器學習-監督式學習篇(上)
輕鬆搞定機器學習-監督式學習篇(上)

搞定機器學習其實一點也不難,前提是要用對方法!(上)

隨著人工智慧的深入發展,沒有學習能力的 AI 侷限性越發明顯,為了突破這個瓶頸,「機器學習」逐漸成為 AI 領域的研究核心之一,也發展出各種機器學習的演算法。

現在有哪些熱門的算法?各有什麼特點?本次就要來盤點幾個常用的機器學習演算法,並告訴你為何機器學習語言要首選 Python

機器學習演算法大致上可以分為三類:監督式學習(Supervised learning)、非監督式學習(Unsupervised learning)與強化式學習(Reinforcement learning)。

本次將會著重介紹「監督式學習」與「非監督式學習」的演算法。

一、監督式學習

監督學習算法可以分成兩個大方向:分類和迴歸。

1. 線性迴歸(Linear Regression)

▲ 線性回歸的視覺化,平面內有一系列點,尋找出一條最能擬合資料趨勢分布的線用來預測新的資料出現的位置

 

線性回歸源自於統計學的方法,透過一個或多個自變量與因變量進行建模的回歸分析。視覺化後如上圖,平面內有一系列點,尋找出一條最能擬合資料趨勢分布的線,也可以用來預測新的資料出現的位置,就叫線性回歸。

在線性回歸中,數據使用線性預測函數來建模,並且未知的模型參數也是通過數據來估計,簡單的線性回歸公式為:

▲ 簡單的線性回歸公式

 

y 是因變量(y)對自變量(x)任何給定值的預測值;B0 是截距,即 x 為 0 時 y 的預測值;B1 是回歸係數–表示期望 y 隨著 x 的增加而改變多少;x 是自變量(期望的變量影響 y);e 是估計值的誤差,或表示回歸係數估計值有多少變化。

2. 邏輯回歸(Logistic Regression)

邏輯回歸延伸自線性回歸,是一個二元分類算法,透過選取不同的特徵與權重來對樣本進行機率分類。

邏輯回歸會使用某種函數將機率值壓縮到某一特定範圍,如 Sigmoid 函數。S 函數是一種具有 S 形曲線、用於二分類的函數。

▲ 邏輯分布函數圖像(圖片來源:Wikipedia)

 

邏輯回歸的輸出變量是離散型(Discrete),而「回歸」輸出變量為連續值。所以實際上雖然叫「邏輯回歸」,但它屬於「分類型」算法,而非「回歸型」算法。

3. 支援向量機(Support Vector Machine,SVM)

支援向量機 SVM 同樣是一個二元分類算法,它可以在 N 維空間找到一個 (N-1) 維的超平面,以使兩類數據之間的餘量最大化。這個超平面可以使兩個類別之間的邊距或距離最大化,平面內如果存在線性可分的兩類點,SVM 可以找到一條最適直線將這些點分開。

除了進行線性分類之外,SVM 還可以使用核技巧(kernal trick)進行非線性分類,將其輸入隱式對映到高維特徵空間中。

▲ 散點圖展示了線性支援向量機核函式的決策邊界(虛線)(圖片來源:Wikipedia)

 

SVM 的應用範圍很廣,如文字和超文字的分類、大規模圖像識別與分類、手寫字型的辨識等等。

4. 樸素貝葉斯分類器(Naive Bayes classifier)

「貝葉斯推斷」延伸自貝葉斯理論,是描述在擁有部分已知條件下,某事件的發生機率。

而在機器學習中,樸素貝葉斯分類器是以假設「特徵之間是獨立的、不相互影響的」的簡單機率分類器,可以直接利用條件機率相乘的方法,計算出聯合機率分布。

貝葉斯公式為:

▲ 貝葉斯公式

 

也可以表示為:

▲ 貝葉斯公式

 

posterior:通過樣本 X 得到參數 θ 的機率,稱為後驗機率。
likehood:通過參數 θ 得到樣本 X 的機率,即似然函數。通常為數據集的表現。
prior:該樣本 θ 機率,稱為先驗機率。
evidence:樣本 X 發生的機率,即為要預測的值。

即使一般現實世界的資料通常無法滿足貝葉斯理論的假設,但樸素貝葉斯分類器卻是相當實用,因其簡單高效,而辨識效能也不輸許多算法繁複的分類器。貝葉斯模型的應用範圍非常廣泛,大數據、機器學習、資料採擷、Python資料分析等領域都會見到。

5. 決策樹(Decision Tree)

決策樹最一開始是作為決策分析中的方法,指的是每個決策都可能引出複數的事件,最後通向不同結果,視覺化後的圖形很像樹的枝幹,故稱決策樹。

而在機器學習中,決策樹是一種用來處理分類問題的樹狀結構,每個內部節點表示一個評估欄位,而每個分枝代表一個可能的欄位輸出結果,每個則葉節點代表不同分類的類別標記。

▲ 決策樹演算法示意圖

 

ID3、C4.5 、C5.0、CHAID 及 CART 都是決策樹演算法的代表。

決策樹的最主要功能,是藉由分類已知的實例來建立一個樹狀結構,並從中歸納出實例裡、類別欄位與其它欄位間的隱藏規則,通常也能利用來做樣本的預測,同時決策樹產生的模型也具有易於解釋的優點哦。

本篇為上篇,下篇請點此連結

 

 

 

 

 

推薦文章:
台灣本土開發AI 發行首張音樂專輯<<武漢肺炎>>

Python vs R語言:哪個比較適合人工智慧/機器學習?

六個月從工地工人轉職 Java 軟體工程師,全因半年做了「對的決定」

如何使用人工智慧工具,活用 Python 簡化繁瑣的行銷工作?

最夯程式語言Python,你夠了解它嗎?!

為何人人都想學Python?看完這三大理由我服了!

地球的救星是AI?!保護環境效率竟比人類強!?(上)

 

還在為行銷傷透腦筋?Python幫你複雜工作簡單做!(下)

還在為行銷傷透腦筋?Python幫你複雜工作簡單做!(下)
還在為行銷傷透腦筋?Python幫你複雜工作簡單做!(下)

善用Python,行銷工作不再傷腦筋!(下)

本篇為下篇,上篇請點此連結

去蕪存菁 簡化你繁瑣的工作

行銷引進 AI 工具,最大的原因在於:可以省去行銷人員不斷執行重複性行為,以及將繁瑣龐雜的工作項目簡化。

Python 具體能怎麼幫助行銷人的呢?

1. 自動化文件管理

其實不只是數位行銷人員,辦公中總會要管理統整各式文件、報表、帳單、網頁、傳真或圖片影片,絕對是一項無可避免的日常性工作。

但大量繁瑣的文書處理工作十分費時,而透過 Python 設計出符合自己需求的「自動整理文件」程式,可以省下大筆時間和精力。例如:

  • 自動整理及分類檔案
  • 重命名多個文件
  • 用指定條件搜尋文件夾或文件
  • 自動填寫資料表單
  • 文件清理

電腦中的好幾百份文件,需要各自進行整理、分類、歸類並檔名……這樣的重複勞動可以用 Python 設計一個輕巧的程式,輕鬆自動完成!

推薦閱讀:Python 變身告白神器、還會幫你整理電腦?6 種 Python 隱藏版技能一次學

2. 不需要套別人行銷管理的模板

數位行銷的管道千變萬化,搜索型廣告、內容行銷、社群行銷、聯盟行銷、通訊行銷、搜尋引擎優化(SEO)等等,有的行銷人便會採用功能強大的工具軟體來統整和管理行銷活動的方方面面。

即使市面上有許多這樣的工具軟體,但為了滿足大多數客戶的需求,裡面的通用模板可能不符合個人要求。在 Python 的幫忙下,就可以為自己量身打造出合適的工具軟體。

3. 追蹤行銷效果

一項行銷活動結束後,必需要追蹤、分析和後續檢討,以便評估這次行銷效益,並且進行各項調整精進。

Python 具有與數據分析、數學計算相關的功能,因此可以輕鬆地開發一些簡易的程式,藉此來分析其中的不同面向。也適合為廣告式行銷設計追蹤用的工具程式。

各行各業都適合 萬用職場加分技

Python 可以說是當今學習工程師的首選,而對於行銷人而言,它可以說是兼顧「自動化重複性任務、數據挖掘及數據分析」功能的理想之選。

但正如各行業皆嘗試導入 AI 應用是勢不可擋的潮流,現今不論從事什麼產業、何種職位,從業務部門到行銷團隊、從管理階層到社群小編,具備程式語言技能也逐漸成為趨勢,不論何種工作,若擁有程式語言知識都會是一項利器。具有程式設計的思維後,在職場往來上也能與工程師溝通順暢,亦能讓從不同角度去思考。

只要有心想學習程式設計,Python 絕對是適合任何人的程式語言入門磚喔!

 

 

 

 

 

推薦文章:
AI 人工智慧、ML 機器學習、深度學習、Python 是什麼?


Python vs R語言:哪個比較適合人工智慧/機器學習?


捷克新創Resistant.AI 開發2產品 揪出欺騙人工智慧的詭計


人工智慧釀酒超越人類 全球首支AI威士忌勇奪金牌


電腦白癡也想當工程師?真心建議先學Python!


想要遠距工作高效率?那你不能錯過人工智慧”番茄鐘工作法”(上)


保護地球靠AI!效率竟比人類快3000倍?!(上)

還在為行銷傷透腦筋?Python幫你複雜工作簡單做!(上)

還在為行銷傷透腦筋?Python幫你複雜工作簡單做!(上)
還在為行銷傷透腦筋?Python幫你複雜工作簡單做!(上)

善用Python,行銷工作不再傷腦筋!(上)

【為什麼我們要寫這篇文章】
身為「最受歡迎程式語言」,上至人工智慧與大數據、下至網頁開發,Python 通通能搞定!
但你知道 Python 在數位行銷領域也掀起了旋風嗎?為何行銷人也紛紛學起 Python?

推薦閱讀:IEEE 2019 程式語言排行榜:Python 蟬連最熱門語言之首

數位行銷(digital marketing)可以說是目前最活躍、增長最快的行銷方式,根據 WiseGuyReports.com 的報告,超過 30 %以上的公司行號,要將近八成的廣告預算都將用在數位行銷上,並且是五年內都規劃如此。

推薦閱讀:網路行銷的7大心法-SEO、SEM、CRO、內容行銷等

當重心都放在數位行銷上,自動化工具和軟體程式等能提高效率、節省成本的「行銷自動化」技術,也順勢成為當前數位行銷領域備受重視的一環。

並且強調代碼可讀性、簡潔的語法和高度易學性的 Python,對於想成為「會程式設計的行銷人」來說,自然會是第一首選。

Python 究竟如何可以成為最佳行銷助手呢?

AI 行銷學 Python 脫穎而出的秘密

程式設計問答網站 Stack Overflow 的最新調查指出,Python 將會在一年內取代 SQL 語言。除了有龐大的市占比,當從事行銷或是數據分析的工作者要學習第一個程式語言,Python 也因以下種種被認為是最佳選擇:

  1. 1. Python 內建大型模組與函式庫,可以簡單上手數據分析或複雜的程式計算
  2. 2. Python 是一種開源語言,可以完全控制原始碼,讓用 Python 編寫自定義程式非常容易,可以根據需要修改自動化工具
  3. 3. 免費及開源的特性,讓 Python 有許多輔助工具、編輯器與 IDE(整合開發環境)
  4. 4. Python 能與幾乎所有現代作業系統兼容
  5. 5. 相比於其他靜態語言,身為動態語言的 Python 語法簡潔、具有較高的彈性
  6. 6. 良好的視覺化能力,輕鬆做到資料視覺化分析

推薦閱讀:連 IBM 都推!入行 AI 人工智慧必學 Python 的 8 大理由

當然對行銷人來說,學習程式語言並不是為了要取代工程師,而是希望能代替自己解決一些邊角卻又耗時的工作。

本篇為上篇,下篇請點此連結

 

 

 

 

推薦文章:
AI 人工智慧、ML 機器學習、深度學習、Python 是什麼?


捷克新創Resistant.AI 開發2產品 揪出欺騙人工智慧的詭計


人工智慧釀酒超越人類 全球首支AI威士忌勇奪金牌


Python vs R語言:哪個比較適合人工智慧/機器學習?


想要擁有職場競爭力?學Python是你最好的選擇!


自學Python卻遇撞牆期?24條建議幫幫你!


學Python的三大好處,看完馬上手刀報名了!

Python與R語言究竟哪個最適合機器學習?(下)

Python與R語言究竟哪個最適合機器學習?(下)
Python與R語言究竟哪個最適合機器學習?(下)

Python好還是R語言好?本篇教你分析判斷!(下)

本篇為下篇,上篇請點此連結

R語言

R 語言是經由統計學家所開發。任何開發人員只要看一下語法,就能馬上分析、預測。由於該語言包含了機器學習中涉及的數學計算,而機器學習是從統計學中衍生出來的,因此對於希望能深入理解底層細節和構建創新的正確選擇。

如果你的工作需要深入觀察,像是需要靠人工智慧檢驗數據集之類,R可以替你縮小工作範圍,可以說是最佳選擇。

R 的優勢

適用於分析:如果你的工作需要大量的檢驗數據,R 是最佳選擇,因為它可以快速建模,並與數據集一起搭建 AI/機器學習模型。

大量實用的函式庫和工具:與 Python 類似,R 也有不同的封包,可以提升機器學習模型的結果。例如 Caret 包就支援 AI人工智慧應用,助於有效地建立預測模型。R 開發人員可受惠於這些數據分析包:因為這些封包中包含了針對建模前後階段的特定任務,如模型驗證或數據可視化等。

適用於探索性工作:如果你需要在項目開始的階段,在測量模型中進行探索性研究時,使用 R 語言的話就只需要添加幾行代碼即可完成。

R 的缺點

難學且不容易寫好。身為弱型別(Weak typing)的程式語言,函數經常會回傳預料之外的物件種類。

與其它的語言不同,R 是從 1 開始,不是 0 開始。

結論:

R 和 PythonAI/機器學習上都有各有各的優勢。可以將兩者運用在各自擅長的項目中,互相搭配使用,才能發揮最大的效益。

一開始我們可以使用 Python 進行資料彙整的階段,再將資料丟到 R 做數據檢驗。按照這些思路,可以將 R 用作 Python 的庫或將 Python 用作 R 的預處理庫。

 

 

 

 

 

推薦文章:
為超越MotoGP冠軍VR46而生:人工智慧重機賽車手MOTOBOT


AI 人工智慧、ML 機器學習、深度學習、Python 是什麼?


捷克新創Resistant.AI 開發2產品 揪出欺騙人工智慧的詭計


人工智慧、機器人、Python、大數據⋯⋯到底有什麼關係?


保護地球靠AI!效率竟比人類快3000倍?!(上)


想要擁有職場競爭力?學Python是你最好的選擇!


自學Python卻遇撞牆期?24條建議幫幫你!

Python與R語言究竟哪個最適合機器學習?(上)

Python與R語言究竟哪個最適合機器學習?(上)
Python與R語言究竟哪個最適合機器學習?(上)

Python好還是R語言好?本篇教你分析判斷!(上)

如果你想要建構一個機器學習的專案,卻又卡在不知道該使用Python 還是 R 語言,恭喜你,你現在真的看到對的文章了!

這篇文章不僅能讓你了解到 Python 與 R 語言的不同,同時也會知道哪個程式語言在多方面都比較佔優勢。現在就讓我們一起深入研究吧!

Python 與 R 語言都具有相同的功能,且是數據科學家間非常熱門的工具。約有 69% 的開發者在人工智慧上使用 Python 語言,R 語言則只佔了 24%。兩者都是免費開源的程式語言,不過 Python 被建構成一種可廣泛使用的程式語言,而 R 語言則是為了統計分析而造。

推薦閱讀:Python 與 R 語言之戰鹿死誰手?盤點 5 個即將消失的程式語言!

人工智慧AI)與數據分析,是真正可以開源創新的兩個領域。Python 與 R 語言都創造了強大的開源設備與函式庫的環境,可以幫助不同能力水平的數據科學家更有效率的執行工作。

機器學習與數據分析之間的區別,相對來說比較模糊。但是一般認為,機器學習在模型可解釋性上著重在預知的準確程度;而數據分析則著重在事實的推測。 在預知的準確度上,Python 可是有口皆碑的;R 語言則擅長於事實推論與靜態推論。

推薦閱讀:AI 人工智慧、ML 機器學習、深度學習、Python 是什麼?

這並不代表我們要將這兩個語言歸為一類 —— Python 完全可被應用為數據分析工具;R 語言則可以完成機器學習中的一些大工程。兩種語言都有許多能使其達成對方優點的函式庫與封包:像是 Python 有能進行測量後歸納的函式庫;R則有增強預測準確度的封包。

下一段,我們將會深入說明兩種語言,可以大大地幫助你針對自己的專案,使用合適的語言。

Python 語言

Python 程式語言誕生於 80 年代末期,承擔了推動 Google 內部框架的重責大任。Python 被一群熱情的程式設計師所擁護著,也被廣泛應用在 YouTube、Instagram、Quora 和 Dropbox。Python 也全面被應用在 IT 產業以及開發團隊中的基礎建構。因此如果你需要的是一個多工的程式語言以及大量可擴展的 AI 函式庫,Python 可以說是首選。

Python 的優點

多功能 — 如果你的企業需要的不只是測量與統計數據的功能,Python 是首選。例如設計一個功能強大的網站。

平滑的學習曲線 — Python 並不難學,能幫助你短時間內找到熟練的開發人員。

大量的重要函式庫 — Python 以擁有無數的數據組裝與控制函式庫聞名。以 Scikit-realize 為例,它包含了資料探勘與和調查的工具,讓使用 Python 時,增加了超乎想像的 AI 便利性。另一個函式庫 Pandas,給予工程師無可比擬的結構與資訊評估工具,減少了改進的時間。如果你的開發團隊需要 R 語言的其中一個主要功能,就建議可以使用 RPy2。

更好地整合能力 — P大致上來說,在任何的開發場合,Python 的兼容性比 R 還好。不管是否使用如 C、C++ 等較低階的語言來開發,都能透過 Python 包裝連接更好的組件。而且,讓數據研究人員的將一個基於 Python 建構的函式庫,串接到其他需要完成的工作也很容易。

提高生產力 — Python 語言,比起 R 語言可讀性特別高,幾乎如同人類平時交談用的方言,因此也能提高開發團隊的生產力。

Python 的缺點

缺少公共儲存庫,也沒有某些可選的 R 專用庫。

由於是動態組合,在某些情況下,Python 會造成一些計算錯誤,而這些導致錯誤的因素又不太確定。

連結本篇為上篇,下篇請點此

 

 

 

 

 

推薦文章:
AI 人工智慧、ML 機器學習、深度學習、Python 是什麼?


捷克新創Resistant.AI 開發2產品 揪出欺騙人工智慧的詭計


人工智慧、機器人、Python、大數據⋯⋯到底有什麼關係?


為超越MotoGP冠軍VR46而生:人工智慧重機賽車手MOTOBOT

 

穿戴裝置潮流正夯,人工智慧眼鏡如何改造你我世界?!(上)


聽聽看不吃虧!關於Python的24條真心建議!


人工智慧時代新寵兒-機器狗Aibo(上)

學Python前,先弄懂人工智慧.機器學習和深度學習!

學Python前,先弄懂人工智慧.機器學習和深度學習!
學Python前,先弄懂人工智慧.機器學習和深度學習!

想學Python前,了解人工智慧.機器學習可是會讓你事半功倍哦!


▲ 人工智慧、機器學習與深度學習之間的關係比較圖(圖片來源:騰訊xw.qq.com)

 

什麼是人工智慧?

人工智慧」,又稱為「人工智能」,英文為「Artificial Intelligence(縮寫為 AI)」簡單來說就是:任何讓電腦能夠像人類般思考、表現出類似人類的行為」的科技;更具體一點的說法,人工智慧是一種可以感知、學習、推理、協助決策,並採取行動幫助我們解決問題的科技。

1980年代約翰瑟爾(John Searle),提出對「人工智慧」分類方式:

  • 人工智慧(Strong AI) : 機器能具有與人類相同完整的認知能力。
  • 人工智慧(Weak AI) : 機器不需要具有與人類相同完整的認知能力,只要設計得看起來像具有智慧就即可。

機器學習

機器學習是人工智慧的一個分支、是實現人工智慧的一個途徑,簡單來說就是利用機器學習為手段解決人工智慧中的問題。

機器學習理論主要是設計和分析一些讓電腦可以自動「學習」的演算法。機器學習演算法是一類從資料中自動分析而歸納出規則來,並利用此規則對未知的資料進行預測的演算法。

機器學習是第三波人工智慧發展的代表技術;而在眾多機器學習演算法中,深度學習(多層次類神經網路的代稱)是近幾年成長最快、表現最亮眼的技術。

深度學習

深度學習是機器學習演算法的一種的,為人工智慧中成長最快的領域。

「深度學習」是模擬人類神經網絡的運作方式,只要懂得定義問題,有足夠質量的資料以及轉化為模型的能力,幾乎可以應用在任何決策問題上,雖然不見得都有準確的預測能力。不過目前常見的 Google 語音辨識、文字翻譯、照片分類、自動回信、垃圾郵件判斷,現在都是用深度學習來做的。

Python 與人工智慧的關係

PythonAI 領域最多人使用的程式語言,主要原因之一是因為它有大量的資料庫,讓用戶可自由套用、執行各式功能、操作。這些資料庫由來自四面八方的來源 (如 PyPi) 所發布,包含預先編寫好的程式片段,可以讓 AI 開發人員不需要從頭開始編寫程式。

機器學習與深度學習都需要連續的數據處理,Python 的函式庫則可讓你取用、處理、轉換這些數據。例如應用於深度學習的 Keras 函式庫,它允許快速計算和原型設計,因為它除了使用計算機的 CPU 之外還使用 GPU。

想要了解其他與人工智慧、機器學習、深度學習有關的八個函式庫,請見此篇文章:連 IBM 都推!入行 AI 人工智慧必學 Python 的8大理由

推薦閱讀:AI 產業革命開始!為何 Python 成人工智慧必備語言?

 

 

 

 

 

推薦文章:
連 IBM 都推!入行 AI 人工智慧必學 Python 的8大理由


AI 重機車手 MOTOBOT – 專為超越 MotoGP 冠軍 Rossi 而生


AI 產業革命開始!為何 Python 成人工智慧必備語言?


AI人工智慧將如何衝擊你的未來?還是學好Python吧!


歐盟發布”人工智慧白皮書”,管管AI不囂張!(上)


自學Python有一套!6種數據類型報你災!


人工智慧到底有多強大?!甩尾比冠軍車手還精準?!(上)

學Python就是要摸透它的底細!一次弄懂它與人工智慧的關係!

學Python就是要摸透它的底細!一次弄懂它與人工智慧的關係!
學Python就是要摸透它的底細!一次弄懂它與人工智慧的關係!

學Python的你清楚它的底細嗎?聽說它跟人工智慧和大數據密不可分呢!

在媒體一直報導人工智慧 (AI)、機器人(Robot)未來可能會取代我們的工作時,我們又看到坊間有教人工智慧技術的機構,又端出一堆名詞如大數據(Big Data)、Python 程式語言……,還有深度學習等等。那到底這些名詞中間到底又有什麼關聯?這篇將以問答方式一一幫你解答

推薦閱讀:AI 人工智慧來了!你的未來何去何從?學好 Python 是正解

人工智慧、機器人,是同一個東西嗎?

相信大家都看過有關機器人的電影,都把機器人描述的很厲害,甚至比人類還強!沒錯,這些機器人很賴害是因為他們裡面被導入了「人工智慧

推薦閱讀:5 部電影告訴你:AI 時代來臨,是否對人類造成威脅?

人工智慧」,又稱「人工智能」,英文為「Artificial Intelligence(縮寫為 AI)」簡單來說就是:任何讓電腦能夠像人類般思考、表現出類似人類的行為」的科技;更具體一點的說法,人工智慧是一種可以感知、學習、推理、協助決策,並採取行動幫助我們解決問題的科技。

推薦閱讀:妻子機器人在日本大賣?假的!但本尊也是會說笑的 AI 美人

為何有些人工智慧會比真人還厲害

日前又 AI 甩尾,角度精準過方程式車手的消息;還有 AI 雀士在網路上打日式麻將打過一拖拉庫真人的訊息、⋯⋯究竟人工智慧是怎麼學習的?為何會比真人厲害?

推薦閱讀:AI 又贏了?人工智慧「Suphx」打敗人類麻將高手!

AI 學習事務其實與人類學習事物的方法相仿,就是所謂的機器學習及深度學習。

機器學習理論主要是設計和分析一些讓電腦可以自動「學習」的演算法。機器學習演算法是一類從資料中自動分析而歸納出規則來,並利用此規則對未知的資料進行預測的演算法。

而「深度學習」又是模擬人類神經網絡的運作方式,只要懂得定義問題,有足夠質量的資料以及轉化為模型的能力,幾乎可以應用在任何決策問題上,雖然不見得都有準確的預測能力。不過目前常見的 Google 語音辨識、文字翻譯、照片分類、自動回信、垃圾郵件判斷,現在都是用深度學習來做的。

推薦閱讀:AI 人工智慧、ML 機器學習、深度學習、Python 是什麼?看這一篇就對了!

搜集大數據讓AI去做機器學習,加上不同的演算法成就不同專長的AI?

餵給 AI 正確的大量資料(大數據),加上好的大腦(演算法),AI 才能做出正確的判斷。

各種領域都應用了不同功能的人工智慧,如醫療、教育、製造、理財及自動駕駛等,就如同每個人擅長的領域都不一樣:有的人擅長賽車、有的人擅長分析、有人善於醫療等等。

推薦閱讀:台灣研發 AI 走進加護病房,預測敗血症準確率達八成五

演算法的不同深深影響 AI 的思考與學習模式,好的演算法可以製造出卓越的人工智慧。例如甩尾角度比人類還精準的 MartyKHANA AI。

推薦閱讀:AI 甩尾媲美 Ken Block、屌打玩命關頭?方程式冠軍嘆:要失業了⋯⋯

反之,不好的演算法會讓 AI 判斷錯誤。2016 年發生了全球首例 Tesla 自駕車撞上大貨車的意外,是因為 Tesla 的自動駕駛系統,無法辨識在強烈日照下而有反光的大貨車,因此未能即時做出煞車判斷。因為此演算法從未學習過這類大數據。

Python 與 人工智慧的關係?

Python 是目前人工智慧領域最被廣泛使用用的程式語言

因為 Python 的語言十分簡單好懂、就像是使用人類的語言在與電腦溝通一樣,加上跨平台的性質,操作方便又快速,因此已有許多工程師使用其語言發布大量與人工智慧、機器學習、深度學習領域相關的資料庫,讓用戶可自由套用、執行各式各樣的功能、操作。這些資料庫由來自四面八方的來源 (如 PyPi) 所發布,包含預先編寫好的程式片段,讓 AI 開發人員不需要從頭開始編寫程式。

機器學習與深度學習都需要連續的數據處理,Python 的函式庫則可以讓你取用、處理、轉換這些數據。例如應用於深度學習的 Keras 函式庫,它允許快速計算和原型設計,因為它除了使用計算機的 CPU 之外還使用 GPU。

其他與人工智慧、機器學習、深度學習有關的八個函式庫,請見此篇文章:連 IBM 都推!入行 AI 人工智慧必學 Python 的8大理由

推薦閱讀:AI 產業革命開始!為何 Python 成人工智慧必備語言?

 

 

 

 

 

 

推薦文章:
AI人工智慧將如何衝擊你的未來?還是學好Python吧!


AI 產業革命開始!為何 Python 成人工智慧必備語言?


AI 重機車手 MOTOBOT – 專為超越 MotoGP 冠軍 Rossi 而生


連 IBM 都推!入行 AI 人工智慧必學 Python 的8大理由


穿戴裝置潮流正夯,人工智慧眼鏡如何改造你我世界?!(上)


聽聽看不吃虧!關於Python的24條真心建議!


人工智慧時代新寵兒-機器狗Aibo(上)

金融駭客剋星誕生!捷克新創AI,揪出欺騙人工智慧詭計!(下)

金融駭客剋星誕生!捷克新創AI,揪出欺騙人工智慧詭計!(下)
金融駭客剋星誕生!捷克新創AI,揪出欺騙人工智慧詭計!(下)

捷克新創的人工智慧輕鬆破解金融駭客的詭計?!到底它是如何辦到的?

 

本篇為下篇,上篇請點此連結

捷克 AI 新創成金融駭客剋星 助企業找出資安新解方

有鑑於此,捷克一家新創公司「Resistant AI」開發一套機器學習技術,專門抵擋對抗機器學習、竄改樣本、目標性操弄等等攻擊。

Resistant AI 目前主要提供兩項產品:

1. 文檔防禦(Resistant Documents)

駭客會偽造或更換銀行對帳單、購買收據、薪資單或 KYC 文件(Know Your Customer)的名稱等等「良性文件」,欺騙 AI 所驅動的認證系統、逃過檢測,藉此成功開啟銀行帳戶,或是讓自動處理系統批准借貸。

而「文檔防禦」是讓機器學習系統拒絕自動處理過程中遭遇的可疑文檔,並同時標記出所有惡意或可疑的來源。

2. 交易防禦(Resistant Transactions)

深度學習系統的測試,經典方法是收集大量人工標註好的數據,藉此來評估系統的準確性。然而很難輸入未來所有可能發生的數據,也就無法得知系統的每個反應是否符合邏輯。並且只要將輸入的數據添加微小干擾,就可以欺騙深度學習系統,讓系統「核准」惡意數據。

「交易防禦」就是用 AI 偵測可疑的交易行為,例如當有付款、轉帳或是申請信貸等請求時,交易防禦系統就會進行統計性的檢查,如果確實辨認出有問題的請求,就會阻止交易,保護系統模組內資訊不被偷取,同時也能防止系統受到誘導而做出錯誤的決定。

Resistant AI 的創辦人兼 CEO Martin Rehak 在資訊安全領域工作已經超過 12 年,他表示:駭客對於 AI 系統漏洞的破解技術已經越來越成熟,這也讓啟發他跟他的團隊創立現在的 Resistant AI 來提供解決方案。公司當前的目標客戶是金融企業、金融科技新創,與在金融交易過程中採用AI的公司。

Resistant AI 於 4 月底進行種子輪融資,獲風險投資公司 Index Ventures 及 Credo Venture 領投,成功籌集 275 萬美元資金。

「以AI之矛,攻AI之盾」

AI 人工智慧的發展固然大幅提高人們的生活品質,但同時也要認識到科技的兩面性,科技僅僅是工具,水能載舟、亦能覆舟,如果遭到有心人惡意利用也會產生負面影響。正如 AI 可以被用於詐騙,也可以被用於反詐騙,利用技術的方式不同,帶來的影響也將截然不同。

因此,在面對一項科技時,除了理解、學習、使用之外,更要進一步超越它——努力成為卓越 AI 人工智慧的創造者,才能不被 AI 所掌控。

推薦閱讀:AI 產業革命開始!為何 Python 成人工智慧必備語言?

 

 

 

推薦文章:
AI 重機車手 MOTOBOT – 專為超越 MotoGP 冠軍 Rossi 而生


連 IBM 都推!入行 AI 人工智慧必學 Python 的8大理由


AI人工智慧將如何衝擊你的未來?還是學好Python吧!


AI 產業革命開始!為何 Python 成人工智慧必備語言?


地球的救星是AI?!保護環境效率竟比人類強!?(上)


極致精準甩尾竟然靠人工智慧?!還有什麼是它辦不到?!(上)


19個語法搞定好,學習Python沒煩惱!